Robert D. Leary

27 Buena Vista Park, Cambridge, MA 02140
 (610) 823-9182 bobbyleary@gmail.com
 linkedin.com/in/bobbyleary; bobbyleary.com

Mechanical Engineer well versed in real-time, model-based state estimation of ground vehicles using the fusion of road map information and perception algorithms, as well as the development and testing of mechatronic systems.

Education

Doctor of Philosophy in Mechanical Engineering The Pennsylvania State University, University Park, PA Dissertation: "Real-time Vehicle State Estimation Using Previewed Map Information"	2013 - 2019
Master of Science in Mechanical Engineering The Pennsylvania State University, University Park, PA Thesis: "Real-time Vehicle Pose Estimation Utilizing Monocular Vision and Lane Marker Maps"	2013 - 2018
Bachelor of Science in Mechanical Engineering with Honors The Pennsylvania State University, University Park, PA Thesis: "Map-based Vehicle Occlusion Detection"	2009 - 2013
Notable Projects	
Real-time Vehicle State Estimation Using Previewed Map Information (PhD Thesis)	2018 - 2019
Sponsor: National Science Foundation	
Fused a vehicle motion model and mapped road information using a preview-horizon-based Kalman Filter framework to achieve 8.91 cm (1-σ) lane-level localization accuracy in real-time (50Hz).	
 Developed immersive simulation-in-the-loop environment for real-time algorithm testing by integrating the Robot Operating System (ROS) and Unity. Investigated the influence of roadside infrastructure, such as signs and poles, with a vehicle pose estimator to improve position and orientation state estimates. 	
Vehicle Pose Estimation Using Monocular Vision & Lane Marker Maps (Master's Thesis)	2014 - 2018
Sponsor: The Pennsylvania State University	
Implemented a real-time (100 Hz) six degree-of-freedom vehicle pose estimation algorithm in ROS using monocular vision and a sparse map of lane markers. Achieved a precision of 6.0 mm in positioning and 0.04 degrees in orientation state estimation.	
 Developed model-based analytical Jacobian from the pinhole camera model relating small perturbations in vehicle states to changes in pixel location of map features. Created reduced-order lane marker maps through the combination of camera, differential GPS, and laser rangefinder data. Used reduced-order lane marker maps to determine the position and orientation of the vehicle in real-time using a monocular camera. 	
Map-based Shift Scheduler for Volvo SuperTruck	2015
Sponsor: Volvo Trucks	
Improved Volvo SuperTruck truck fuel economy by 6% by incorporating previewed map terrain information into engine management system.	
 Developed an SQL database backend for the mapped terrain inflection points. Incorporated GPS position and velocity in a Kalman Filter to estimate the vehicle station for data lookup in the database. 	

• Developed communication bridge between ROS and Simulink Real-Time over the User Datagram Protocol (UDP) for data transfer.

Design & Build of a Mobile Mapping Ve	ehicle	2013 - 2019
Sponsor: The Pennsylvania State Universit	ý	
Led a team of undergraduate engineers with the vehicle with LiDAR, multi-camera array, GPS/INS	e design and build of a Ford Transit Connect mobile map 6, and wheel encoder sensor systems.	ping
 Integrated uninterruptible battery power for powering sensors. Battery system cou 	e data fusion and post-processing data collection scena system with vehicle alternator for self-sustained battery Ild run for up to four hours without replenishing charge. for microsecond-accurate triggering of sensors.	
Design & Build of a Map Database Sys	tem	2015 - 2019
Sponsor: The Pennsylvania State Universit	ý	
_	e terabytes of raw data collected from the mobile mappir ane marker feature maps for real-time state estimation.	
 Implemented method for storing over on Developed Matlab, Python, and C++ APIs 	of raw data from the mobile mapping vehicle. e million images in folder tree structure for real-time ret for querying the raw and post-processed datasets. e marker geolocations from LiDAR scans and camera ima	
Map-based Lane Detection & Lane Dep	parture Warning System	2013 - 2014
Sponsor: Volvo Trucks		
Fused monocular vision and a lane marker map driver.	o to provide audible lane departure warnings to a tractor-	-trailer
GPS/INS, and lane marker map at the Lar	o tractor-trailer within a lane using a forward-facing cam son Transportation Institute test track. r based on lane-level lateral position measurements.	iera,
Inspection Robot For Spent Nuclear Fu	iel Dry-Storage Casks	2015 - 2016
Sponsor: Department of Energy		
Worked with a team to develop a robotic system	n to inspect dry-storage casks containing nuclear spent f	uel.
 Designed robot to adhere to tight geometer 	istry partners, and representatives from the Department try, high temperature, and radiation constraints. to control the position and velocity of the robot.	of Energy.
Supervision Roles		
Undergraduate & Graduate Student Re	esearch Mentor	2013 - 2019
Sponsor: The Pennsylvania State Universit		
	ate and graduate researchers, two of which resulted in	
projects within the Intelligent Vehicles ar Held weekly meetings to coordinate and	uate students to operate and contribute to over 10 reseand Systems Group. direct students with their research projects. thesis editing to over five Master's and PhD thesis projec	
Technical Skills		
Advanced to expert proficiency in all listed a	areas	
 Robot Operating System (7 yrs) Linux (7 yrs) Python (7 yrs) / C++ (5 yrs) / Matlab (9 yrs) OpenCV (7 yrs) 	 Database: MySQL, PostgreSQL, MongoDB (15 yrs) Server-side: Node.js, Go, PHP (8 yrs) Web: HTML, Javascript, CSS (17 yrs) Test Driven Development (5 yrs) 	 Blender / Unity (5 yrs) API Development (8 yrs) Git (7 yrs) Swift (3 yrs)
Related Hobbies		

- Developed a bus transit iOS application to provide real-time transit information for 50 cities across the United States. Created Node.js API for communicating with MongoDB database backend.
 Developed photo-realistic driving simulator software. In the process of submitting a patent application.

Educational Outreach

Penn State Exploration-U (2017 - 2018)

Designed easy-to-understand hands-on activities to promote STEM education in local schools.

Penn State Artificial Intelligence vs. Science-U Summer Camp (2012 / 2015)

Assisted in teaching programming and ground robot control algorithms to high school students and developed a website for an open-source robotics project geared towards beginners (bobbyleary.com/r3).

Volunteer at Shaver's Creek Environmental Center (2014 - 2018)

Volunteer for the annual Fall Harvest Festivals, Maple Harvest Festivals, and general trail maintenance.

Awards

- 2018 Global Programs Graduate Student Travel Grant
- 2013 Schreyer Honors College

- 2011 Boscov Academic Excellence Award
- 2010-2011 Berks Campus Honors Program Award
- 2013 Outstanding Mechanical Engineering Senior

Publications

K. Varadarajan, **R. Leary**, E. Pelletier, M. Wahba, S. Brennan (2019) **"Analyzing the Effects of Geometric Lane Constraints on RADAR-based Sensing of Available Vehicle Headway using Mapped Lane Geometry and Camera Registration of Lane Position"** Proceedings of the ASME 2019 Dynamic Systems and Control Conference.

K. Wolkowicz, **R. Leary,** J. Moore, S. Brennan (2019) **"Real-time Path-based Fusion of Spatial Databases with Temporal Control Inputs for Assistive Operation of Wheelchairs"** Proceedings of the ASME 2019 Dynamic Systems and Control Conference.

K. Wolkowicz, **R. Leary,** J. Moore, S. Brennan (2019) **"Statistical Determination of Decision-Making Regions for Branching Paths: An Algorithm With A Wheelchair Assistance Application"** Proceedings of the ASME 2019 Dynamic Systems and Control Conference.

R. Leary, S. Brennan (2018) **"Region of Attraction of a Real-time Vehicle Pose Estimator Using Monocular Vision Lane Marker Maps"** Proceedings of the 14th International Symposium on Advanced Vehicle Control Conference.

R. Leary, S. Brennan (2018) **"Extracting Geometric Road Centerline and Lane Edges From Single-scan LiDAR Intensity Using Optimally Filtered Extrema Features"** Proceedings of the IEEE 2018 Conference on Control Technology and Applications.

K. Wolkowicz, **R. Leary,** J. Moore, S. Brennan (2018) **"Discriminating Spatial Intent from Noisy Joystick Signals for Wheelchair Path Planning and Guidance"** Proceedings of the ASME 2018 Dynamic Systems and Control Conference.

R. Leary, S. Brennan (2016) **"Region of Attraction for a Vehicle Pose Estimator Utilizing Monocular Vision and Lane Marker Maps"** Proceedings of the ASME 2016 Dynamic Systems and Control Conference.

M. Wahba, **R. Leary,** N. Ochoa-Lleras, J. Safi, S. Brennan (2016) **"A ROS-Simulink Real-Time Communication Bridge using UDP with a Driver-in-the-Loop Application"** Proceedings of the ASME 2016 Dynamic Systems and Control Conference.

B. McNelly, **R. Leary,** K. Reichard, S. Brennan (2016) **"Characterizing Successful Robotic Insertion and Removal from a Dry Storage Cask: Using Peg-like Jamming and Wedging Analysis"** Proceedings of the ASME 2016 Pressure Vessels and Piping Conference.

C.J. Lissenden, S. Choi, H. Cho, A. Motta, K. Hartig, X. Xiao, S. Le Berre, S. Brennan, K. Reichard, **R. Leary,** B. McNelly **"Toward Robotic Inspection Of Dry Storage Casks For Spent Nuclear Fuel"** Proceedings of the ASME 2016 Pressure Vessels and Piping Conference.

C.J. Lissenden, S. Choi, H. Cho, A. Motta, K. Hartig, X. Xiao, S. Le Berre, S. Brennan, K. Reichard, **R. Leary,** B. McNelly **"Toward Robotic Inspection Of Dry Storage Casks For Spent Nuclear Fuel"** Proceedings of the ASME 2016 Pressure Vessels Technology.

P. Stankiewicz, N. Ochoa-Lleras, **R. Leary**, S. Brennan (2015) **"Vehicle Rollover Prevention Using the Zero-Moment Point in an LQR Output Regulator"** Proceedings of the ASME 2015 Dynamic Systems and Control Conference.